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ABSTRACT

The derivation of vegetation leaf area index (LAI) and the fraction of photosynthetically active

radiation (FPAR) absorbed by vegetation globally from the Sea-Viewing Wide Field-of-view

Sensor (SeaWiFS) multispectral surface reflectances using the algorithm developed for the

MODIS (moderate resolution imaging spectroradiometer) instrument is discussed here, with

special emphasis on the quality of the retrieved fields. Uncertainties in the land surface

reflectance and model used in the algorithm determine the quality of the retrieved LAI/FPAR

fields. The in-orbit radiances measured by space-borne sensors require corrections for calibration

and atmospheric effects and this introduces uncertainty in the surface reflectance products. The

model uncertainty characterizes the accuracy of a vegetation radiation interaction model to

approximate the observed variability in surface reflectances. When the amount of spectral

information input to the retrieval technique is increased, not only does this increase the overall

information content but also decreases the summary accuracy in the data. The former enhances

quality of the retrievals, while the latter suppresses it. The quality of the retrievals can be

influenced by the use of uncertainty information in the retrieval technique. We introduce a

stabilized uncertainty which is basic information to the retrieval technique required to establish

its convergence; that is, the more the measured information and the more accurate this

information is, the more reliable and accurate the algorithm output will be. The quality of

retrieval is a function of the stabilized uncertainty whose accurate specification is critical for

deriving biophysical surface parameters of the highest quality possible using multispectral land

surface data. The global LAI and FPAR maps derived from SeaWiFS multispectral surface

reflectances and uncertainty information as well as an analysis of these products is presented

here.
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INTRODUCTION

Leaf area index (LAI) and the fraction of photosynthetically active radiation absorbed by

vegetation (FPAR) which characterize vegetation canopy functioning and its energy absorption

capacity are important variables in terrestrial modeling studies of canopy photosynthesis and

transpiration. Terrestrial carbon exchange studies with the retrieved structural information show

that canopy and landscape structure plays a major role in determining CO2 fluxes in spatially

heterogeneous environments (Sellers et al., 1997). Therefore, these variables are key state

parameters in most ecosystem productivity models and in global models of climate, hydrology,

biogeochemestry and ecology (Sellers et al., 1996). Advances in remote sensing technology

(Deschamps et al., 1994; Justice et al., 1998; Diner et al., 1999) and radiative transfer modeling

(Ross and Marshak, 1984; Kuusk, 1985; Verstraete et al., 1990; Myneni, 1991; Ross et al., 1992;

Kimes et al., 2000) greatly improved the possibility of accurate estimates of biophysical

information from spatial, spectral, angular and temporal resolution of remotely sensing data. The

objective of this paper is to demonstrate that uncertainties in multispectral surface reflectances

are critical input information to retrieval algorithms in order to derive biophysical surface

parameters of the highest quality possible using multispectral land surface data. The operational

algorithm for the production of global LAI and FPAR fields developed for the MODIS

(moderate resolution imaging spectroradiometer) instrument applied to the SeaWiFS (Sea-

Viewing Wide Field-of-view Sensor) data is used to demonstrate this technique.

At least two factors influence the quality of surface biophysical parameters retrieved from

remotely sensed surface reflectances:
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• uncertainty in the land surface reflectance product. Satellite-borne sensors measure in-orbit

radiances of the target through the atmosphere. The surface reflectances are obtained by

processing the in-orbit data to correct for atmospheric and other environmental effects which

leads to uncertainties in the surface reflectance product;

• model uncertainty determined by the range of natural variation in biophysical parameters not

accounted by the model. In general, this type of uncertainty depends on the amount of

information available when retrieving biophysical parameters from surface reflectances as

well as the temporal and spatial resolution of data (Diner et. al., 1999).

In general, these uncertainties set a limit to the quality of retrievals; that is, accuracy in the

retrievals cannot be better than summary accuracy in data and the model. However, the quality of

the retrievals can be influenced by the use of uncertainty information in the retrieval technique.

Definitions of uncertainties in the land surface reflectance product and model, as well as their

impact on the retrievals, are discussed in the third section following a formulation of the inverse

problem of retrieving LAI and FPAR from surface spectral reflectances. It is shown that if

uncertainties are ignored, it can result not only in the loss of information conveyed by the

multispectral data, but also in destabilization of the retrieval process. Results from this section

underlie our strategy of producing global SeaWiFS LAI/FPAR fields of highest possible quality.

FORMULATION OF THE INVERSE PROBLEM

The problem of retrieving LAI and FPAR from atmospherically corrected Bi-directional

Reflectance Distribution Function (BRDF) is formulated as follows (Knyazikhin et al., 1998a):
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given sun (Ω0) and view (Ωv) directions, BRDFs dk(Ω0,Ωv) at N spectral bands and uncertainties

δk(Ω0,Ωv) (k = 1, 2, …, N),  find LAI and FPAR. The algorithm compares observed dk(Ω0,Ωv)

and modeled rk(Ω0,Ωv,p) canopy reflectances for a suite of canopy structures and soil patterns

that represent a range of expected natural conditions. Here p=[canopy, soil pattern] denotes a

pattern of canopy structure and soil type (Kimes et al., 2000). All canopy/soil patterns p for

which modeled and observed BRDFs differ by an amount equivalent to or less than the

corresponding uncertainty, i.e.,
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are considered as acceptable solutions. FPAR is also calculated for each acceptable solution. The

mean values of LAI and FPAR averaged over all acceptable solutions and their dispersions are

taken as solutions and retrieval uncertainties (Knyazikhin et al., 1998b; Kimes, et al., 2000;

Zhang et. al., 2000; Tian et. al., 2000). If the inverse problem has a unique solution for a given

set of surface reflectances, mean LAI coincides with this solution and its dispersion equals zero.

If Eq. (1) allows for multiple solutions, the algorithm provides a weighted mean in accordance

with the frequency of occurrence of a given value of LAI. The dispersion magnitude indicates

the reliability of the corresponding LAI value. The accuracy of retrievals can not be improved if

no additional information is available. Figure 1 illustrates this approach. Note, the concept of

multiple acceptable solutions was originally formulated and implemented in the MISR

(Multi−angle Imaging SpectroRadiometer) aerosol retrieval algorithm (Martonchick et al., 1998).
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In the case of a dense canopy, its reflectance in one or several directions can be insensitive

to various parameter values (e.g., LAI) characterizing the canopy because, for example, the

reflectance of solar radiation from the underlying soil surface or lower leaf-stories is completely

obscured by the upper leaves (Price,1993; Liu and Huete, 1995; Jasinski, 1996; Carlson and

Ripley, 1997). When this happens, the canopy reflectance is said to belong to the saturation

domain (Knyazikhin et al., 1998b). The distribution of acceptable LAI values will appear flat

over the range of LAI, illustrating that the solutions all have equal probability of occurrence (Fig.

1b). The reliability of LAI values retrieved under a condition of saturation is very low (Gobron

et. al., 1997). This situation can be recognized by the retrieval technique (Knyazikhin et al.,

1998b). We introduce a saturation index (SI) as

  valuesLAI retrieved ofnumber  total

saturation of conditionsunder  retrieved LAIs ofnumber 
SI =  .

This index is an indicator of the quality of the retrievals; that is, the smaller its value, the more

reliable the algorithm output would be. One may expect low values of the saturation index when

more information is used to retrieve LAI and FPAR (Diner et. al., 1999) However, the saturation

index may increase with increase of uncertainties δk.

Given the set d = (d1, d2, …, dN) of observed canopy reflectances, it may be the case that Eq.

(1) has no solutions. A pixel for which the algorithm retrieves a value of LAI and FPAR is

termed a retrieved pixel. The ratio of the number of retrieved pixels to the total number of

processed pixels is the retrieval index (RI), i.e.,



7

 pixels  vegetatedofnumber  total

pixels retrieved ofnumber 
RI =  .

This variable characterizes the quality of LAI and FPAR maps showing of how the retrieved LAI

and FPAR values cover the globe. It is a function of uncertainties in the observed and modeled

canopy reflectances and number N of spectral bands used. Generally, the retrieval index

increases with increasing uncertainties in data and model. However, increasing uncertainties

means poor quality of input data and therefore poor quality in LAI/FPAR. Uncertainties,

therefore, must be carefully evaluated in order to produce optimal algorithm performance. A

better result should, in general, have a high retrieval index, low saturation index and retrieval

dispersion.

UNCERTAINTIES IN MODELED AND OBSERVED CANOPY REFLECTANCES

Uncertainties in the land surface reflectance product and model uncertainties set a limit to the

quality of retrievals and, thus, their specification is critical to production of global LAI and

FPAR of maximum possible quality. Their definitions are presented in this section.

Uncertainties in the Land Surface Reflectance Product

Any satellite-borne sensor measures in-orbit radiances of the target through the atmosphere.

Obtaining surface reflectances requires processing of the in-orbit data to correct for atmospheric

and other environmental effects, which determines uncertainties in the surface reflectance

product. Let d1, d2, …, dN  be atmospherically corrected BRDFs at N spectral bands. We treat

these values as independent random variables with finite variances σk
2, k = 1, 2, …, N, and
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assume the deviations εk=(dk−mk)/σk follow Gaussian distribution. Here mk is the mathematical

expectation of dk, which are treated as “true values.” The random variable
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characterizing the proximity of atmospherically corrected data d = (d1, d2, …, dN) to true values

m = (m1, m2, …, mN) has a chi−square distribution. A value of χσ
2 ≤ N indicates good accuracy in

the atmospherically corrected surface reflectances. We assume that the atmospheric correction

algorithm provides surface reflectances d satisfying χσ
2 ≤ N with a probability 1 − α; that is,

Prob(χσ
2 > N) = α where 1 − α is the value of the chi−square distribution at N. Dispersions

σ = (σ1, σ2, …, σN) are uncertainties in the land surface reflectance product.

Model Uncertainty

Model uncertainty characterizes the accuracy of models to approximate natural variability, which

in general is quite high. For example, consider two broadleaf forests (having the same

canopy/soil patterns) located, say, in Siberia and in North America. The algorithm treats these as

identical scenes. However, their reflectances can differ by 15-20% due to factors which were not

accounted in the model. It means, one must assume 15-20% uncertainties in the simulation to

account for the fact that these two forests are treated as belonging to one class. This type of

uncertainties depend on the amount of information available when retrieving biophysical

parameters from surface reflectances, as well as on the temporal and spatial resolution of data.
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The propagation of model uncertainty through the retrieval technique starts when one

replaces “true” reflectances m in (2) with modeled reflectances r  = (r1, r2, …, rN). We use values

εM,k=(mk−rk)/σM,k, to characterize the inaccuracy in model predictions. Dispersions

σM = (σM,1, σM,2, …, σM,N) are model uncertainties. Consider a canopy radiation model that can

simulate surface reflectances m with accuracy N≤− ][2

M
rmσχ . Based on the Minkowski

inequality (Bronstein and Semengyaev, 1985), the following transformation of χσ[d − r ] can be

performed,

χσ[d − r ] = χσ[(d − m) − (r  − m)] ≥ | χσ[d − m] − χσ[m − r ] | 
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Thus, χσ[d − r ] is a function of the ratio σM,k/σk. Let σk tends to zero (i.e., one has very accurate

surface reflectance measurements) while holding σM,k constant (i.e., the model is not improved).

The quantity χσ[d − m] is a bounded value, i.e., χσ[d − m] ≤ N , while χσ[m − r ] becomes

arbitrary large. It means that the more accurately atmospheric correction is performed, the more

inaccurately the solutions of Eq. (1) approximate LAI values in this case, because the “true” LAI

values do not provide a good fit between observed and modeled reflectances. Ignoring the model

uncertainty in the retrieval algorithm, therefore, causes a destabilization of the convergence

process; that is, the more accurate the input information is, the more reliable the algorithm output

should be. This instability also takes place when one uses the metric 
Mσχ characterizing the

accuracy in model predictions without accounting for the uncertainties in measurements.
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To stabilize the convergence process, a stabilized uncertainty δ = (δ1, δ2, …, δN)  is

introduced as 222
,M

2 /)( θσσδ kkk += . Here θ is a stabilization parameter as specified below. This

uncertainty is used to solve Eq. (1). It follows from the Minkowski inequality that

χδ[d − r ] = χδ[(d − m) + (m − r )] ≤ χδ[d − m] + χδ[m − r ]  
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We assign a value to θ such that θλmax + θ(1−λmin) = 1 is satisfied, i.e., θ = 1/(1+λmax − λmin). The

stabilization parameter varies between 0.5 and 1. It follows from (3) that the use of the stabilized

uncertainty establishes convergence of the retrieval technique; that is, tending σk and σM,k to zero

independently, “true” LAI always provides a good fit between observed and modeled

reflectances within the stabilized uncertainty δ and, thus, solutions of Eq. (1) can approximate

the desired parameters.

The metric δχ  is a decreasing function with respect to the stabilized uncertainty δ. If model

and land surface product uncertainties are underestimated (i.e., δ < δδ0), the algorithm will not
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admit those solutions of Eq. (1) which provide a good fit in the correct metric 
0δχ and fail in the

metric δχ . It can result in fewer solutions or even the absence of a solution to Eq. (1) and,

consequently, in lower values of the dispersion and retrieval index. For example, all canopy/soil

patterns with N=− ][
0

rdδχ , will be treated as unacceptable solutions in this case. The theory

of ill-posed problems states that a best estimate of desired parameters satisfies N=− ][
0

rdδχ

(Tikhonov and Arsenin, 1986). Therefore, we cannot expect the decrease in the number of

acceptable solutions, the dispersion and the retrieval index to indicate improvement in the

algorithm output. On the contrary, the underestimation of real uncertainties can result in the

deterioration of retrieval quality.

If model and land surface reflectance uncertainties are overestimated (i.e., δ > δδ0), then

≤− ][ rdδχ N≤− ][
0

rdδχ , i.e., the number of solutions to Eq. (1) and, consequently, the

retrieval index will increase. It results in a larger number of acceptable solutions, higher retrieval

index and, consequently, lower quality of LAI retrievals. Unlike the former case, however, the

best estimation of the desired parameters satisfies Eq. (1). It means that the underestimation of

uncertainties can result in a lower retrieval quality than their overestimation. A technique for

modification of the algorithm for deriving biophysical parameters of the highest possible quality

is equivalent to maximization of retrieval index, minimization of saturation index and the

dispersion while holding the best estimation in the set of acceptable solutions. Accurate

specification of uncertainties should provide a high value of retrieval index for any combination

of spectral bands used in Eq. (1). Under this condition, the dispersion, retrieval index, and

saturation index can characterize quality of retrievals.

To study the effect of uncertainties on retrievals, an overall uncertainty δ  is introduced as
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N
Nδδδδ �21=  ,

where δk is the stabilized uncertainty in the ith spectral band. The value of NNδ is proportional

to the area (N=2) or volume (N>2) of the ellipse/ellipsoid determined by the inequality (1) in the

N−dimensional spectral space (Fig. 1a). In this paper, we will use a relative υk and an overall

relative )(Nυ  uncertainty defined as

k

k
k r

δυ = ,   k = 1, 2, …, N , N
NN υυυυ �21)( =  . (4)

The overall uncertainty can be considered as a measure of the uncertainty in model and land

surface reflectance product. We cannot expect a lower uncertainty in the LAI/FPAR retrievals

than the overall uncertainty. Two retrievals are said to be comparable if they were obtained from

data having the same value of the overall uncertainty. On this equal-overall uncertainty basis,

one can compare different retrievals as a function of the number N of spectral bands used to

solve Eq. (1) and uncertainties υk, k = 1, 2, …, N.

DATA ANALYSIS

Multispectral data from the Sea-Viewing Wide Field-of-view Sensor (SeaWiFS) were used to

produce LAI/FPAR of the highest possible quality with the MODIS algorithm. Geocoded,
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calibrated, cloud-screened and atmospherically corrected global surface reflectances in 8 spectral

bands at 8km resolution were used in this study. The temporal range of data is September 1997,

with nominal mission duration of 5 years. We used surface reflectances centered at 443 (blue),

555 (green), 670 (red) and 865 (near−infrared) nm to retrieve LAI and FPAR with MODIS

algorithm (Knyazikhin et al., 1998a). The width of the blue, green and red bands was 20 nm, and

NIR was 40 nm. For each pixel, solar and view zenith angles and azimuths were available and

are required by the algorithm. The daily data of each month were composited into one layer

based on the minimum−blue standard.

A biome Classification Map (BCM) is another important ancillary data layer used as input to

the algorithm. The BCM is derived from the AVHRR Pathfinder data set (Myneni et. al. 1997).

In this map, global vegetation is classified into 6 biome types: grasses and cereal crops, shrubs,

broadleaf crops, savannas, broadleaf forests and needle forests. The structural attributes of these

biomes are parameterized in terms of variables that the radiative transfer model admits (Myneni

et al., 1997). The three-dimensional transport equation was used to simulate canopy reflectances

rk, k = 1, 2, …, N, using the BCM, sun-view geometry and canopy/soil pattern as input

(Knyazikhin et al., 1998a).

Spectral Signature of the SeaWiFS Surface Reflectances

Figure 2 presents histograms of canopy reflectances for different spectral bands and biome types

and Table 1 shows mean values of these histograms. Typically, global canopy reflectance varies

between 0 and 0.2 at the red band, 0.1 and 0.4 at the NIR band, 0 and 0.15 at the green band and

less than 0.1 at the blue band. On average, needle forests have the strongest absorption in red,
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green and blue bands, but have a stronger reflectance in the NIR band. Grasses can be regarded

as the “brightest” biome exhibiting almost the highest reflectances in red, green and blue bands.

Broadleaf crops have a strong reflectance in both NIR and red bands while the reflectance of

broadleaf forests is strong in NIR but very low in the red band.

The Normalized Difference Vegetation Index (NDVI) is defined as (dNIR − dR)/(dNIR + dR),

where dNIR and dR are observed reflectances at the NIR and red band, respectively. The NDVI is

a very important measure of chlorophyll abundance and energy absorption. The histograms of

NDVI values derived from the SeaWiFS data in July and November 1998 are shown in Fig. 3c

and 3d. Most of the broadleaf and needle forests exhibit very high NDVI values compared to

other biomes. On average, the mean values are 0.67 for broadleaf and 0.71 for needle forests,

respectively (Table 1).

It is helpful to introduce a data density function that indicates how densely the pixels occupy

the spectral space. Each point in the N−dimensional spectral space represents reflectances

d = (d1, d2, …, dN) of a pixel at N spectral bands. The data density function is defined as the

number of points per unit volume about the point d. Figs. 3a, 3b and 4 demonstrate 25% data

density contours in different two-dimensional spectral spaces. Each contour separates an area on

the spectral plane of high data density containing 25% of the pixels from a given biome type.

These contours show the most probable location of pixels belonging to a given biome type in the

spectral space. The better these contours are separated, the more distinguishable the

corresponding biomes are. In the red−NIR plane (Figs. 3a and 3b) grasses and crops are well

separated from forests. In between these are broadleaf crops and savannas. Both biomes have

high NDVI and their contours are close to the NIR axis. The NDVI of grasses and cereal crops is

substantially lower and their contours are close to the soil line. Figure 4 shows that contours can
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overlap, especially in the red−blue plane. The degree of overlap depends on resolution of the

data (Tian et al., 2000). The contours are maximally separated in the red−NIR plane. This

indicates that these two bands contain maximum information about the biome type, at least, in

the case of 8 km resolution data. This may explain why the algorithm produces reasonable results

when using red and NIR data only.

Figure 3 demonstrates seasonal variation in the contour location and NDVI distribution. All

contours move toward the soil line from July (Fig. 3a) to November (Fig. 3b) because of a

decrease in LAI. This shift is more pronounced in the case of shrubs. The area of the contours

becomes larger in November, which implies a lower data density. The NDVI distributions also

show a sharp seasonal change (Figs. 3c and 3d).

QUALITY OF LAI/FPAR RETRIEVALS

Monthly minimum−blue composite SeaWiFS reflectances over the vegetated areas in July and

November 1998 were chosen as input to the algorithm in this section. The term vegetated pixel is

used to refer to pixels of NDVI value greater than 0.1. The algorithm was run pixelwise over all

vegetated pixels. In this section, we discuss performance of the algorithm as a function of the

number of spectral bands and overall uncertainties.

The relative uncertainties (Eq. 4) are input to the LAI/FPAR algorithm. However, the

SeaWiFS processing does not provide this information routinely. Therefore, we start with the

estimation of a possible upper boundary of the overall uncertainty )(Nυ as follows. Assuming

that the relative uncertainties in red, υR, and NIR, υNIR, reflectances are wavelength independent,

i.e., υR = υNIR = )2(υ , find such )2(υ  for which 95% of all land pixels for which Eq. (1) has no
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solutions for non-vegetated areas and corrupted data due to clouds or atmospheric effect.

SeaWiFS surface reflectances at red and NIR spectral bands (N = 2) acquired over land on

September 22 were used to specify )2(υ . The solution to this problem was )2(υ =0.2

(Knyazikhin at al., 1998c; Kimes et al., 2000). This value was assigned to )(Nυ . Thus, this

upper level of the overall uncertainty allows the algorithm to discriminate between vegetation

and non-vegetation reflectances.

 The uncertainties in the land surface reflectance product can be estimated from the

atmospheric correction algorithm (Vermote et. al., 1997; Kaufman et. al., 1997). Table 2 shows a

theoretical estimate of the relative uncertainties in the MODIS surface reflectance product

(Vermote, 2000). The following values were assigned to the relative uncertainties (4) in our

study, υR = 0.2 (red), υNIR = 0.05 (NIR), υB = 0.8 (blue), and υG = 0.1 (green). The overall

relative uncertainty )4(υ  of the four spectral bands is 0.168, which is quite close to the upper

boundary of the overall uncertainty specified above.

To investigate the quality of the LAI/FPAR fields retrieved from multi−spectral surface

reflectances (multi-band retrieval), we ran the algorithm using the composite SeaWiFs surface

reflectances with (1) two (red and NIR); (2) three (red, NIR and green); and (3) four (red, NIR,

green, and blue) spectral bands as input. The objective of this section was to analyze the use of

different combinations of spectral bands to produce LAI and FPAR fields. Special emphasis was

given to assessing the influence of relative uncertainties on the quality of the retrieved

LAI/FPAR product.
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Multiband Retrieval with Band Independent Uncertainties

It is assumed in this subsection that the relative uncertainties (Eq. 4) do not depend on

wavelength, i.e., υR = υNIR = υB = υG, each being set to upper level of the overall uncertainty 0.2.

Figure 5 shows the retrieval index for various biome types and number of the input spectral

bands used. For a certain uncertainty setting, the retrieval index is a decreasing function of the

number of bands. One can see a sharp jump caused by inclusion of the blue surface reflectance in

Eq. (1). Table 3 summarizes the use of different combinations of spectral bands in the retrieval

technique. All combinations of spectral bands exclude the blue, on average, have higher values

of retrieval index. The following arguments can be presented. The foliage optical properties at

blue and red wavelengths are similar and, thus, the canopy reflectances at these spectral bands

are comparable in magnitude. However, atmospheric effect at blue is much stronger than at red

and, therefore, uncertainties in the atmospherically corrected surface reflectances are greater at

blue than at red band (Table 2). However, these were set to 0.2, i.e., the stabilized uncertainty

appears to be substantially underestimated and the retrieval index decreased.

Dispersions of retrieved LAI values for two biome types and various combinations of input

spectral bands are shown in Fig. 6. Although some minor differences exist, one can not see much

improvement in the retrieval quality when the number N of bands used to retrieve LAI and FPAR

increases. The saturation index for different combinations of spectral bands is summarized in

Table 4. It is only slightly sensitive to N. This implies that we can not improve accuracy in

retrievals by simply including more spectral bands.
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Multiband Retrieval with Band Dependent Uncertainties

Including more spectral information in the retrieval technique initiates two competing processes:

increase of information content of data and decrease of overall accuracy in the input data. The

first enhances the quality of retrievals, while the second suppresses it. In this subsection, we set

values of relative uncertainties to the uncertainties in the land surface reflectance product

(Table 2) which are treated as the lower bound of the overall uncertainties. It should be noted

that the model uncertainty in canopy reflectance at the green spectral band can be quite high.

Indeed, leaf albedo at this wavelength is characterized by temporal variation. For example, a

young leaf reflects more energy than an old one. This was not accounted in our model and, thus,

the relative uncertainty at the green wavelength is probably underestimated.

Figure 7 demonstrates the accuracy of retrieved LAI values derived from surface

reflectances at red and NIR wavelengths (N=2, legends “R&NIR,bd” and “R&NIR,bi”), and at

red, NIR and green (N=3; legends “R&NIR&G,bd” and “R&NIR&G,bi”) spectral bands.

Abbreviation “bd” (band dependent) and “bi” (band independent) identify two cases. In the first

case, the relative uncertainties υk depend on wavelength (Table 2). In the second case, relative

uncertainties are wavelength independent, each being set to N
NN υυυυ �21)( = , N=2 or 3. Note

that in all cases, the overall uncertainty )(Nυ  has the same value (0.1). Again, retrieval

dispersions are slightly sensitive to the number N of input spectral bands. However, their values

are clearly lower compared to those shown in Fig. 6. This indicates that the retrieval dispersion is

sensitive to the overall uncertainty but not to the number N of spectral bands in Eq. (1), i.e.,

retrieval accuracy is mainly determined by uncertainties in input data. Figure 8 shows the

retrieval index for the four cases described above. The overall uncertainty affects the retrieval
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index; that is, retrieval index increases with increase of the overall uncertainty (compare Figs. 5

and 8). However, with overall uncertainty constant, an accurate prescription of band-dependent

uncertainties results in higher values of the retrieval index (Fig. 8).

Table 5 shows the saturation index for different biomes and number N (N = 2, 3 and 4) of

input spectral bands. Values of relative uncertainties listed in Table 2 were taken as input for

Eqs. (1) and  (4). First of all, the saturation index decreased compared to those shown in Table 4,

i.e., accurate surface reflectance data and models provide higher quality retrievals. Note that the

saturation index is a decreasing function of N (Table 5), and when the overall uncertainty )(Nυ

increases from 0.1 (N = 2 and 3) to 0.168 (N = 4), the saturation index has not increased.

Therefore, an increase in the overall uncertainty due to more input spectral bands does not

necessarily suppress the increase in information supplied to the algorithm if accurate band-

specific uncertainties are available.

Figure 9 demonstrates the retrieval index for N = 4 (four band retrieval) as a function of

biome type and overall uncertainties. The bars labeled “0.1,” “0.168,” “0.2” correspond to the

cases when relative uncertainties in spectral reflectances were wavelength independent, i.e.

)4(νν =k , and set to 0.1, 0.168 and 0.2, respectively. The legend “0.168bd” identifies retrieval

indices obtained by using band-specific uncertainties νk (Table 2). One can see that the use of

band specific uncertainties results in higher retrieval index, and retrievals of the best possible

quality.
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Test of Physics

It is well known that there is a strong relationship between a vegetation index, such as NDVI,

and surface parameters such as LAI and FPAR (Asrar et. al., 1984; Tucker and Sellers, 1986;

Peterson et. al. 1987; Verma et. al. 1993; Myneni and Williams, 1994; Chen, 1996). This

relationship provides a method to test the physics of retrievals. Figure 10 shows the NDVI-LAI

and NDVI-FPAR regression curves for two biome types derived using the retrieved LAI and

FPAR fields and NDVI computed from SeaWiFS surface reflectances. These correspond to

literature reports  (Myneni et al., 1997; Clevers, 1989). Note that the LAI values were retrieved

directly from surface spectral reflectances without using the NDVI. The advantages of using

spectral reflectance rather than NDVI are: a) NDVI/LAI relations are sensitive to changes in sun

angle, view angle and background reflectance, while the MODIS algorithm actually exploits

these changes to retrieve LAI. b) the NDVI based algorithm can use two spectral bands only,

while Eq. (1) can ingest all the available spectral information to improve quality of the retrievals.

It should be noted that the retrieved LAI and FPAR fields regressed against SeaWiFS NDVI

shown in Fig. 10 were obtained using different combinations of spectral bands as input to Eq.

(1). Irrespective of the number of input bands, the NDVI/LAI and NDVI/FPAR relations appear

to be close to each other within an accuracy determined by the overall uncertainty )(Nυ . This

illustrates algorithm consistence with respect to the physical processes responsible for the

observed variation in canopy spectral reflectances.
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SEAWIFS LAI/FPAR GLOBAL PRODUCT

With the above results as guiding principles, we now discuss global LAI/FPAR fields derived

from monthly SeaWiFS data from January, April, July and October. Surface reflectances at red,

NIR and green bands and band-dependent uncertainties listed in Table 2 were used to produce

these fields. When the algorithm failed to retrieve a LAI value, the NDVI−LAI and

NDVI−FPAR regression curves shown in Fig. 10 were used to estimate LAI and FPAR values.

This is similar to the processing for MODIS data.

Histograms of LAI values for the four months are shown in Fig. 11. For comparison, a ten-

year average global LAI distributions derived from the AVHRR pathfinder 8 km data using a

NDVI based algorithm (Myneni et al., 1997) is also shown in Fig. 11. The histograms clearly

show the seasonal variations. Shrubs and needle forests located in the northern hemisphere have

low LAI values in the winter (Fig. 11a). During the boreal summer, their LAI increases

(Fig. 11e). Savannas in the southern hemisphere have minimum LAI values in the dry period

during July (Fig. 11e). Broadleaf forests which are located in both the northern and southern

hemispheres have a bimodal distribution of LAI

Figures 12 and 13 are color-coded images of SeaWiFS LAI and FPAR fields for the four

months, in 1998. In the northern hemisphere, LAI increases from January to a maximum in July

and then decreases towards October. On contrary, because January and April are wet and July is

dry season in Africa, LAI values have the lowest values in July. This is consistent with Fig. 11.
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CONCLUSIONS

In this paper, we examine the quality of LAI and FPAR fields derived from SeaWIFs

multispectral surface reflectances using the MODIS LAI/FPAR algorithm as a function of input

and model uncertainties. When the amount of spectral information input to the LAI/FPAR

algorithm is increased, not only does this increase the overall information content but also

decreases the summary accuracy in data. The former enhances the quality of retrievals, while the

latter suppresses it. The total uncertainty sets a limit on the quality of the retrieved fields.

Accurate specification of the uncertainties of inputs to the algorithm is critical to production of

global biophysical variables, and to realize the basic principle of any retrieval technique; that is,

the more the measured information and the more accurate this information is, the more reliable

and accurate the algorithm output will be. This approach was used to produce global SeaWIFS

LAI/FPAR fields of the highest possible quality. Comparing with published results shows this

approach works reasonably well.
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Table 1. Mean reflectance of various biome types

BiomeSpectral
Band Grass/Cereal

Crops Shrubs
Broadleaf

Crops Savannas
Broadleaf
Forests

Needle
Forests

Red 0.104 0.087 0.081 0.083 0.058 0.042
NIR 0.244 0.227 0.288 0.245 0.286 0.255
Blue 0.049 0.038 0.048 0.050 0.047 0.027
Green 0.090 0.078 0.086 0.082 0.073 0.059
NDVI 0.409 0.477 0.559 0.503 0.670 0.713

Table 2. Theoretical estimation of relative uncertainties in atmospherically
corrected surface reflectances (Vermote, 2000)

Spectral Band 1 (Red) 2 (NIR) 3 (Blue) 4 (Green)
Center of Band, nm 670 865 443 555
Bandwidth, nm 20 40 20 20
Relative Error, % 10-33 3-6 50-80 5-12
υk, dimensionless 0.2 0.05 0.8 0.1
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Table 3. Retrieval index for various combinations of spectral bands used to retrieve LAI and FPAR in the case of band
independent uncertainties, )(Nυ =0.2

Spectral Bands Used Biome Type
Red NIR Blue Green Grasses/Cereal

Crops Shrubs
Broadleaf

Crops Savannas
Broadleaf
Forests

Needle
Forests

√ √ 0.970 0.978 0.897 0.972 0.386 0.666
√ √ √ 0.941 0.923 0.843 0.962 0.37 0.573
√ √ 0.936 0.909 0.867 0.973 0.719 0.714
√ √ √ √ 0.717 0.72 0.685 0.648 0.274 0.395
√ √ 0.648 0.697 0.744 0.548 0.634 0.76
√ √ √ 0.651 0.708 0.671 0.572 0.267 0.47

√ √ 0.893 0.74 0.808 0.876 0.713 0.513

Table 4. Saturation Index for various combinations of spectral bands used to retrieve LAI and FPAR in the case of band
independent uncertainties, )(Nυ = 0.2

Spectral Bands Used Biome Type
Red NIR Blue Green Grasses/Cereal

crops, % Shrubs, %
Broadleaf
Crops, % Savannas, %

Broadleaf
Forests, %

Needle
Forests, %

√ √ 13.0 5.8 16.9 10.3 62.2 49.5
√ √ √ 13.0 3.7 11.3 10.6 60.3 44.7
√ √ √ √ 12.2 3.9 10.6 11.4 60.5 43.3
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Table 5. Saturation Index for various combinations of spectral bands used to retrieve LAI and FPAR in the case of band
dependent uncertainties determined in Table 2

Spectral Bands Used Biome Type
Red NIR Blue Green

Uncer-
tainty,

)(Nυ
Grasses/Cereal

Crops, %
Shrubs,

%
Broadleaf
Crops, %

Savannas,
%

Broadleaf
Forests, %

Needle
Forests, %

√ √ 0.1 8.6 1.4 15.1 8.4 48.8 21.4
√ √ √ 0.1 6.5 0.2 6.2 8.9 44.1 9.55
√ √ √ √ 0.168 6.3 0.2 5.5 8.0 43.8 10.2
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Table Captions

Table 1. Mean reflectance of various biome types

Table 2. Theoretical estimation of uncertainties in atmospherically corrected surface reflectances

(Vermote, 2000)

Table 3. Retrieval index for various combinations of spectral bands used to retrieve LAI and

FPAR in the case of band independent uncertainties, )(Nυ  = 0.2

Table 4. Saturation Index for various combinations of spectral bands used to retrieve LAI and

FPAR in the case of band independent uncertainties, )(Nυ = 0.2

Table 5. Saturation Index for various combinations of spectral bands used to retrieve LAI and

FPAR in the case of band dependent uncertainties determined in Table 2
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Figure Captions

Figure 1. (a) Distribution of processed pixels with respect to their reflectances at red (dRED) and

near infrared (dNIR) spectral bands derived from SeaWiFS data (September 22, 1997). Inequality

(1), N=2, defines an ellipse with the semi−axes 2 δRED and 2 δNIR centered at the point

(dRED, dNIR). Each canopy/soil pattern for which modeled reflectances belong to the ellipse is an

acceptable solution. For each set d= (dRED, dNIR) of observed spectral reflectances one sorts the

set of acceptable solutions into ascending order with respect to LAI values and defines a solution

distribution function Φδ(l,d) as the portion of different LAI values which are less than l. (b)

Solution density distribution function dΦδ(l,d)/dl for five different pixels. Mean LAI over this

distribution and its dispersion are taken as LAI retrieval and its uncertainty, respectively.

Figure 2.  Histograms of SeaWiFS canopy reflectances in July 1998: (a) red spectral band; (b)

near infrared spectral band; (c) green spectral band; and (d) blue spectral band.

Figure 3. Statistical properties of SeaWiFS canopy reflectances. Distribution of pixels with

respect to their reflectances at red and near infrared spectral bands in (a) July 1998 and (b)

November 1997. Each biome dependent contour identifies an area of high data density that

contains 25% of the pixels from a given biome type. NDVI histograms for six biome types in (c)

July 1998 and (d) November 1997.

Figure 4. 25% density contours in (a) red−green; (b) red−blue; (c) green-NIR; and (d) in

blue−NIR spectral spaces.
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Figure 5. Retrieval index for various biome types and spectral bands used to produce LAIs.

R&NIR: red and near infrared bands; R&NIR&G: red, near infrared, and green bands;

R&NIR&B&G: red, near infrared, blue, and green bands. Relative uncertainties were set to the

upper bound 0.2.

Figure 6. Dispersions DLAI and DFPAR of retrieved LAI and FPAR values for two biome types

(grasses and cereal crops; broadleaf forests) and spectral bands used by the algorithm. The

meaning of the labels R&NIR, R&NIR&G, and R&NIR&B&G is the same as in Figure 5.

Relative uncertainties were set to the upper bound 0.2.

Figure 7. Dispersions DLAI and DFPAR of retrieved LAI and FPAR values for two biome types

(grasses and cereal crops; broadleaf forests) derived from SeaWiFS surface reflectances at red

and NIR (label R&NIR); red, NIR and green (label R&NIR&G) spectral bands. Abbreviators

“bd” (band dependent) and “bi” (band independent) identify two cases, namely, “bd:” the

relative uncertainties depend on wavelength whose values are presented in Table 2; “bi:” the

relative uncertainties are wavelength independent, each being set to 0.1.

Figure 8. Retrieval index for various biome types and spectral bands used to produce LAIs.

Labels have the same meaning as in Figure 7.
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Figure 9. Retrieval index for various biome types and relative uncertainties derived from

SeaWiFS surface reflectances at red, near infrared, green and blue spectral bands. The bars

labeled “0.1”, “0.168,” and “0.2” correspond to the cases when relative uncertainties in spectral

reflectances were wavelength independent and set to 0.1, 0.168 and 0.2, respectively. The label

“0.168bd” identifies retrieval indexes obtained by using band-specific uncertainties presented in

Table 2.

Figure 10. NDVI−LAI and NDVI−FPAR regression curves for two biome types (grasses and

cereal crops; broadleaf forests). LAI and FPAR fields were derived from SeaWiFS surface

reflectances at red and near infrared (label N&NIR) and red, near infrared and green (label

R&NIR&G) spectral bands which then were regressed against SeaWiFS NDVI. Relative

uncertainties listed in Table 2 were used.

Figure 11. Seasonal variation of LAI histograms derived from the MODIS LAI/FPAR algorithm

with SeaWiFS surface reflectances (right column) and NDVI based algorithm (Myneni et al.,

1997) with 10-year averaged Pathfinder data (right column).

Figure 12. SeaWiFS global LAI in January, April, July and October, 1998.

Figure 13. SeaWiFS global FPAR in January, April, July and October, 1998.
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(a) SeaWiFS JAN
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(b) PathFinder JAN
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(c) SeaWiFS APR
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(d) PathFinder APR
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(e) SeaWiFS JULY
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(g) SeaWiFS OCT
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(h) PathFinder OCT
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